Differential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3΄ variants
نویسندگان
چکیده
In addition to suppressing cellular gene expression, certain miRNAs potently facilitate replication of specific positive-strand RNA viruses. miR-122, a pro-viral hepatitis C virus (HCV) host factor, binds and recruits Ago2 to tandem sites (S1 and S2) near the 5΄ end of the HCV genome, stabilizing it and promoting its synthesis. HCV target site selection follows canonical miRNA rules, but how non-templated 3΄ miR-122 modifications impact this unconventional miRNA action is unknown. High-throughput sequencing revealed that a 22 nt miRNA with 3΄G ('22-3΄G') comprised <63% of total miR-122 in human liver, whereas other variants (23-3΄A, 23-3΄U, 21-3΄U) represented 11-17%. All loaded equivalently into Ago2, and when tested individually functioned comparably in suppressing gene expression. In contrast, 23-3΄A and 23-3΄U were more active than 22-3΄G in stabilizing HCV RNA and promoting its replication, whereas 21-3΄U was almost completely inactive. This lack of 21-3΄U HCV host factor activity correlated with reduced recruitment of Ago2 to the HCV S1 site. Additional experiments demonstrated strong preference for guanosine at nt 22 of miR-122. Our findings reveal the importance of non-templated 3΄ miR-122 modifications to its HCV host factor activity, and identify unexpected differences in miRNA requirements for host gene suppression versus RNA virus replication.
منابع مشابه
miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence
Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunop...
متن کاملThe P body protein LSm1 contributes to stimulation of hepatitis C virus translation, but not replication, by microRNA-122
The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liver-specific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-12...
متن کاملHepatitis C virus genetics affects miR-122 requirements and response to miR-122 inhibitors
Hepatitis C virus (HCV) replication is dependent on a liver-specific microRNA (miRNA), miR-122. A recent clinical trial reported that transient inhibition of miR-122 reduced viral titres in HCV-infected patients. Here we set out to better understand how miR-122 inhibition influences HCV replication over time. Unexpectedly, we observed the emergence of an HCV variant that is resistant to miR-122...
متن کاملSeverity of Hepatitis C Virus (Genotype-3) Infection Positively Correlates with Circulating MicroRNA-122 in Patients Sera
INTRODUCTION Hepatitis C virus (genotype-3) causes acute and chronic hepatitis infection predomination in India. The infectious phase of the virus requires various host factors for its survival and subsequent viral particle production. Small RNA molecules like microRNA-122 (miR-122) are one such factor mostly present in the liver and play a supportive role in viral replication. OBJECTIVE In t...
متن کاملRegulation of hepatitis C virus by microRNA-122.
Most metazoan miRNAs (microRNAs) bind to sites in the 3'-UTRs (untranslated regions) of mRNA targets and negatively regulate protein synthesis. The liver-specific miR-122, however, exerts a positive effect on HCV (hepatitis C virus) RNA levels by binding directly to a site in the 5'-UTR of the viral RNA. HCV translation and RNA stability are unaffected, and therefore miR-122 is likely to act at...
متن کامل